Telephone Number Display



The given circuit, when connected in parallel to a telephone, dis- plays the number dialled from the telephone set using the DTMF mode. This circuit can also show the number dialled from the phone of the called party. This is particularly helpful for receiving any number over the phone lines. The DTMF signal 'generated by the phone on dialling a number' is decoded by DTMF decoder CM8870P1 (IC1), which converts the received DTMF signal into its equivalent BCD number that corresponds to the dialled number. This binary number is stored sequentially in 10 latches each time a number is dialled from the phone. The first number is stored in IC5A (1/2 of CD4508) while the second number is stored in IC5B and so on. The binary output from IC1 for digit '0' as decoded by IC1 is 10102 (=1010), and this cannot be displayed by the seven-segment decoder, IC10. Therefore the binary output of IC1 is passed through a logic-circuit which converts an input of '10102' into '00002' without affecting the inputs '1' through '9'. This is accomplished by gates N13 through N15 (IC11) and N1 (IC12). The storing of numbers in respective latches is done by IC2 (4017). The data valid output from pin 15 of IC1 is used to clock IC2. The ten outputs of IC2 are sequentially connected to the store and clear inputs of all the latches, except the last one, where the clear input is tied to ground. When an output pin of IC2 is high, the corresponding latch is cleared of previous data and kept ready for storing new data. Then, on clocking IC2, the same pin becomes low and the data present at the inputs of that latch at that instant gets stored and the next latch is cleared and kept ready. The similar input and output pins of all latches are connected together to form two separate input and output buses. There is only one 7-segment decoder/driver IC10 for all the ten displays. This not only reduces size and cost but reduces power requirement too. The output from a latch is available only when its disable pins (3 and 15) are brought low. This is done by IC3, IC12 and IC13. IC3 is clocked by an astable multivibrator IC4 (555). IC3 also drives the displays by switching corresponding transistors. When a latch is enabled, its corresponding display is turned on and the content of that latch, after decoding by IC10, gets displayed in the corresponding display. 

For instance, contents of IC5A are displayed on display "DIS1", that of IC5B on "DIS2" and so on. The system should be connected to the telephone lines via a DPDT switch (not shown) for manual switching, otherwise any circuit capable of sensing handset's off-hook condition and thereby switching relays, etc. can be used for automatic switching. The power-supply switch can also be replaced then. Though this circuit is capable of showing a maximum of ten digits, one can reduce the display digits as required. For doing this, connect the reset pin of IC2, say, for a 7-digit display, with S6 output at pin 5. The present circuit can be built on a veroboard and housed in a suitable box. The displays are common-cathode type. To make the system compact, small, 7-segment displays can be used but with some extra cost. Also, different colour displays can be used for the first three or four digits to separate the exchange code/STD code, etc. The circuit can be suitably adopted for calling-line display

Cordless phone backup



Normally the base of a cordless phone has an adaptor and the handset has Ni-Cd cells for its operation. The base unit becomes inoperative in case of power failure. In such conditions, it is better to provide a backup using Ni-Cd cells externally. Here is a simple circuit which can be used with cordless phone SANYO CLT-420 or similar sets.
The working is simple. When AC mains is present, Ni-Cd cells are charged through IC LM317L, which is wired as a current source. Also, diode D3 is reverse-biased, which keeps Ni-Cd cells isolated from positive rail. When AC mains goes off, the Ni-Cd cells provide supply to the cordless phone base unit through diode D3. A green LED is used to indicate the presence of AC mains.
Each Ni-Cd cell costs around Rs 34, and the cost of the backup unit, including the box and cells, would not exceed Rs 300. Hence the circuit is well worth the investment

Multipurpose Circuit for telephone



This add-on device for telephones can be connected in parallel to the telephone instrument.
The circuit provides audio-visual indication of on-hook, off-hook, and ringing modes. It can also be used to connect the telephone to a cid (caller identification device) through a relay and also to indicate tapping or misuse of telephone lines by sounding a buzzer.
 
In on-hook mode, 48V dc supply is maintained across the telephone lines. In this case, the bi-colour led glows in green, indicating the idle state of the telephone. The value of resistor r1 can be changed somewhat to adjust the led glow, without loading the telephone lines (by trial and error).

In on-hook mode of the hand-set, potentiometer vr1 is so adjusted that base of t1 (bc547) is forward biased, which, in turn, cuts off transistor t2 (bc108). While adjusting potmeter vr1, ensure that the led glows only in green and not in red.
When the hand-set is lifted, the voltage drops to around 12V dc. When this happens, the voltage across transistor t1's base-emitter junction falls below its conduction level to cut it off. As a result transistor pair t2-t3 starts oscillating and the piezo-buzzer starts beeping (with switch s1 in on position). At the same time, the bi-colour led glows in red.

In ringing mode, the bi-colour led flashes in green in synchronisation with the telephone ring.
A cid can be connected using a relay. The relay driver transistor can be connected via point a as shown in the circuit. To use the circuit for warning against misuse, switch s1 can be left in on position to activate the piezo-buzzer when anyone tries to tap the telephone line. (When the telephone line is tapped, it's like the off-hook mode of the telephone hand-set.)

Two 1.5V pencil cells can provide Vcc1 power supply, while a separate power supply for Vcc2 is recommended to avoid draining the battery. However, a single 6-volt supply source can be used in conjunction with a 3.3V zener diode to cater to both Vcc2 and Vcc1 supplies

Remote control using telephone



Here is a teleremote circuit which enables switching 'on' and 'off' of appliances through telephone lines. It can be used to switch appliances from any distance, overcoming the limited range of infrared and radio remote controls.
The circuit described here can be used to switch up to nine appliances (corresponding to the digits 1 through 9 of the telephone key-pad). The DTMF signals on telephone instrument are used as control signals. The digit '0' in DTMF mode is used to toggle between the appliance mode and normal telephone operation mode. Thus the telephone can be used to switch on or switch off the appliances also while being used for normal conversation.
The circuit uses IC KT3170 (DTMF-to-BCD converter), 74154 (4-to-16-line demult-iplexer), and five CD4013 (D flip-flop) ICs. The working of the circuit is as follows.

Once a call is established (after hearing ring-back tone), dial '0' in DTMF mode. IC1 decodes this as '1010', which is further demultiplexed by IC2 as output O10 (at pin 11) of IC2 (74154). The active low output of IC2, after inversion by an inverter gate of IC3 (CD4049), becomes logic 1. This is used to toggle flip-flop-1 (F/F-1) and relay RL1 is energised. Relay RL1 has two changeover contacts, RL1(a) and RL1(b). The energised RL1(a) contacts provide a 220-ohm loop across the telephone line while RL1(b) contacts inject a 10kHz tone on the line, which indicates to the caller that appliance mode has been selected. The 220-ohm loop on telephone line disconnects the ringer from the telephone line in the exchange. The line is now connected for appliance mode of operation.

If digit '0' is not dialed (in DTMF) after establishing the call, the ring continues and the telephone can be used for normal conversation. After selection of the appliance mode of operation, if digit '1' is dialed, it is decoded by IC1 and its output is '0001'. This BCD code is then demultiplexed by 4-to-16-line demultiplexer IC2 whose corresponding output, after inversion by a CD4049 inverter gate, goes to logic 1 state. This pulse toggles the corresponding flip-flop to alternate state. The flip-flop output is used to drive a relay (RL2) which can switch on or switch off the appliance connected through its contacts. By dialing other digits in a similar way, other appliances can also be switched 'on' or 'off'.

Once the switching operation is over, the 220-ohm loop resistance and 10kHz tone needs to be removed from the telephone line. To achieve this, digit '0' (in DTMF mode) is dialed again to toggle flip-flop-1 to de-energise relay RL1, which terminates the loop on line and the 10kHz tone is also disconnected. The telephone line is thus again set free to receive normal calls.This circuit is to be connected in parallel to the telephone instrument

Conversation Recorder



This circuit enables automatic switching-on of the tape recorder when the handset is lifted. The tape recorder gets switched off when the handset is replaced. The signals are suitably attenuated to a level at which they can be recorded using the 'MIC-IN' socket of the tape recorder. 

Points X and Y in the circuit are connected to the telephone lines. Resistors R1 and R2 act as a voltage divider. The voltage appearing across R2 is fed to the 'MIC-IN' socket of the tape recorder. The values of R1 and R2 may be changed depending on the input impedance of the tape recorder's 'MIC-IN' terminals. Capacitor C1 is used for blocking the flow of DC.
The second part of the circuit controls relay RL1, which is used to switch on/off the tape recorder. A voltage of 48 volts appears across the telephone lines in on-hook condition. This voltage drops to about 9 volts when the handset is lifted. Diodes D1 through D4 constitute a bridge rectifier/polarity guard. This ensures that transistor T1 gets voltage of proper polarity, irrespective of the polarity of the telephone lines.

During on-hook condition, the output from the bridge (48V DC) passes through 12V zener D5 and is applied to the base of transistor T1 via the voltage divider comprising resistors R3 and R4. This switches on transistor T1 and its collector is pulled low. This, in turn, causes transistor T2 to cut off and relay RL1 is not energised.

When the telephone handset is lifted, the voltage across points X and Y falls below 12 volts and so zenor diode D5 does not conduct. As a result, base of transistor T1 is pulled to ground potential via resistor R4 and thus is cut off. Thus, base of transistor T2 gets forward biased via resistor R5, which results in the energisation of relay RL1. The tape recorder is switched 'on' and recording begins.

The tape recorder should be kept loaded with a cassette and the record button of the tape recorder should remain pressed to enable it to record the conversation as soon as the handset is lifted. Capacitor C2 ensures that the relay is not switched on-and-off repeatedly when a number is being dialled in pulse dialing mode.

Phone Broadcaster



Here is a simple yet very useful circuit which can be used to eavesdrop on a telephone conversation. The circuit can also be used as a wireless telephone amplifier.
One important feature of this circuit is that the circuit derives its power directly from the active telephone lines, and thus avoids use of any external battery or other power supplies. This not only saves a lot of space but also money. It consumes very low current from telephone lines without disturbing its performance. The circuit is very tiny and can be built using a single-IC type veroboard that can be easily fitted inside a telephone connection box of 3.75 cm x 5 cm.
The circuit consists of two sections, namely, automatic switching section and FM transmitter section.

Automatic switching section comprises resistors R1 to R3, preset VR1, transistors T1 and T2, zener D2, and diode D1. Resistor R1, along with preset VR1, works as a voltage divider. When voltage across the telephone lines is 48V DC, the voltage available at wiper of preset VR1 ranges from 0 to 32V (adjustable). The switching voltage of the circuit depends on zener breakdown voltage (here 24V) and switching voltage of the transistor T1 (0.7V). Thus, if we adjust preset VR1 to get over 24.7 volts, it will cause the zener to breakdown and transistor T1 to conduct. As a result collector of transistor T1 will get pulled towards negative supply, to cut off transistor T2. At this stage, if you lift the handset of the telephone, the line voltage drops to about 11V and transistor T1 is cut off. As a result, transistor T2 gets forward biased through resistor R2, to provide a DC path for transistor T3 used in the following FM transmitter section.

The low-power FM transmitter section comprises oscillator transistor T3, coil L1, and a few other components. Transistor T3 works as a common-emitter RF oscillator, with transistor T2 serving as an electronic 'on'/'off' switch. The audio signal available across the telephone lines automatically modulates oscillator frequency via transistor T2 along with its series biasing resistor R3. The modulated RF signal is fed to the antenna. The telephone conversation can be heard on an FM receiver remotely when it is tuned to FM transmitter frequency.
Lab Note: During testing of the circuit it was observed that the telephone used was giving an engaged tone when dialed by any subscriber. Addition of resistor R5 and capacitor C6 was found necessary for rectification of the fault.

Having secrecy in parallel telephones



Often a need arises for connection of two telephone instruments in parallel to one line. But it creates quite a few problems in their proper performance, such as overloading and overhearing of the conversation by an undesired person. In order to eliminate all such problems and get a clear reception, a simple scheme is presented here (Fig. 1).

This system will enable the incoming ring to be heard at both the ends. The DPDT switch, installed with each of the parallel telephones, connects you to the line in one position of the switch and disconnects you in the other position of the switch. At any one time, only one telephone is connected to the line. To receive a call at an end where the instrument is not connected to the line, you just have to flip the toggle switch at your end to receive the call, and act as usual to have a conversation. As soon as the position of the toggle switch is changed, the line gets transferred to the other telephone instrument.

Mount one DPDT toggle switch, one telephone ringer, and one telephone terminal box on two wooden electrical switchboards, as shown in Fig. 3. Interconnect the boards using a 4-pair telephone cable as per Fig. 1. The system is ready to use. Ensure that the two lower leads of switch S2 are connected to switch S1 after reversal, as shown in the figure.

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | cheap international calls