Multipurpose Circuit For Telephone



This add-on device for telephones can be connected in parallel to the telephone instrument.
The circuit provides audio-visual indication of on-hook, off-hook, and ringing modes. It can also be used to connect the telephone to a cid (caller identification device) through a relay and also to indicate tapping or misuse of telephone lines by sounding a buzzer.

In on-hook mode, 48V dc supply is maintained across the telephone lines. In this case, the bi-colour led glows in green, indicating the idle state of the telephone. The value of resistor r1 can be changed somewhat to adjust the led glow, without loading the telephone lines (by trial and error).

In on-hook mode of the hand-set, potentiometer vr1 is so adjusted that base of t1 (bc547) is forward biased, which, in turn, cuts off transistor t2 (bc108). While adjusting potmeter vr1, ensure that the led glows only in green and not in red.

When the hand-set is lifted, the voltage drops to around 12V dc. When this happens, the voltage across transistor t1’s base-emitter junction falls below its conduction level to cut it off. As a result transistor pair t2-t3 starts oscillating and the piezo-buzzer starts beeping (with switch s1 in on position). At the same time, the bi-colour led glows in red.

In ringing mode, the bi-colour led flashes in green in synchronisation with the telephone ring.

A cid can be connected using a relay. The relay driver transistor can be connected via point a as shown in the circuit. To use the circuit for warning against misuse, switch s1 can be left in on position to activate the piezo-buzzer when anyone tries to tap the telephone line. (When the telephone line is tapped, it’s like the off-hook mode of the telephone hand-set.)

Two 1.5V pencil cells can provide Vcc1 power supply, while a separate power supply for Vcc2 is recommended to avoid draining the battery. However, a single 6-volt supply source can be used in conjunction with a 3.3V zener diode to cater to both Vcc2 and Vcc1 supplies

Conversation Recorder



This circuit enables automatic switching-on of the tape recorder when the handset is lifted. The tape recorder gets switched off when the handset is replaced. The signals are suitably attenuated to a level at which they can be recorded using the ‘MIC-IN’ socket of the tape recorder.
Points X and Y in the circuit are connected to the telephone lines. Resistors R1 and R2 act as a voltage divider. The voltage appearing across R2 is fed to the ‘MIC-IN’ socket of the tape recorder. The values of R1 and R2 may be changed depending on the input impedance of the tape recorder’s ‘MIC-IN’ terminals. Capacitor C1 is used for blocking the flow of DC.
The second part of the circuit controls relay RL1, which is used to switch on/off the tape recorder. A voltage of 48 volts appears across the telephone lines in on-hook condition. This voltage drops to about 9 volts when the handset is lifted. Diodes D1 through D4 constitute a bridge rectifier/polarity guard. This ensures that transistor T1 gets voltage of proper polarity, irrespective of the polarity of the telephone lines.
During on-hook condition, the output from the bridge (48V DC) passes through 12V zener D5 and is applied to the base of transistor T1 via the voltage divider comprising resistors R3 and R4. This switches on transistor T1 and its collector is pulled low. This, in turn, causes transistor T2 to cut off and relay RL1 is not energised.
When the telephone handset is lifted, the voltage across points X and Y falls below 12 volts and so zenor diode D5 does not conduct. As a result, base of transistor T1 is pulled to ground potential via resistor R4 and thus is cut off. Thus, base of transistor T2 gets forward biased via resistor R5, which results in the energisation of relay RL1. The tape recorder is switched ‘on’ and recording begins.
The tape recorder should be kept loaded with a cassette and the record button of the tape recorder should remain pressed to enable it to record the conversation as soon as the handset is lifted. Capacitor C2 ensures that the relay is not switched on-and-off repeatedly when a number is being dialled in pulse dialing mode.

Phone Broadcaster



Here is a simple yet very useful circuit which can be used to eavesdrop on a telephone conversation. The circuit can also be used as a wireless telephone amplifier.
One important feature of this circuit is that the circuit derives its power directly from the active telephone lines, and thus avoids use of any external battery or other power supplies. This not only saves a lot of space but also money. It consumes very low current from telephone lines without disturbing its performance. The circuit is very tiny and can be built using a single-IC type veroboard that can be easily fitted inside a telephone connection box of 3.75 cm x 5 cm.
The circuit consists of two sections, namely, automatic switching section and FM transmitter section.
Automatic switching section comprises resistors R1 to R3, preset VR1, transistors T1 and T2, zener D2, and diode D1. Resistor R1, along with preset VR1, works as a voltage divider. When voltage across the telephone lines is 48V DC, the voltage available at wiper of preset VR1 ranges from 0 to 32V (adjustable). The switching voltage of the circuit depends on zener breakdown voltage (here 24V) and switching voltage of the transistor T1 (0.7V). Thus, if we adjust preset VR1 to get over 24.7 volts, it will cause the zener to breakdown and transistor T1 to conduct. As a result collector of transistor T1 will get pulled towards negative supply, to cut off transistor T2. At this stage, if you lift the handset of the telephone, the line voltage drops to about 11V and transistor T1 is cut off. As a result, transistor T2 gets forward biased through resistor R2, to provide a DC path for transistor T3 used in the following FM transmitter section.
The low-power FM transmitter section comprises oscillator transistor T3, coil L1, and a few other components. Transistor T3 works as a common-emitter RF oscillator, with transistor T2 serving as an electronic ‘on’/‘off’ switch. The audio signal available across the telephone lines automatically modulates oscillator frequency via transistor T2 along with its series biasing resistor R3. The modulated RF signal is fed to the antenna. The telephone conversation can be heard on an FM receiver remotely when it is tuned to FM transmitter frequency.
Lab Note: During testing of the circuit it was observed that the telephone used was giving an engaged tone
when dialed by any subscriber. Addition of resistor R5 and capacitor C6 was found necessary for rectification of the fault.

Telephone Call Meter Using Calculator & COB



In this circuit, a simple calculator, in conjunction with a COB (chip-on-board) from an analogue quartz clock, is used to make a telephone call meter. The calculator enables conversion of STD/ISD calls to local call equivalents and always displays current local call-meter reading.
The circuit is simple and presents an elegant look, with feather-touch operation. It consumes very low current and is fully battery operated. The batteries used last more than a year.
Another advantage of using this circuit is that it is compatible with any type of pulse rate format, i.e. pulse rate in whole number, or whole number with decimal value. Recently, the telephone department announced changes in pulse rate format, which included pulse rate in whole number plus decimal value. In such a case, this circuit proves very handy.
To convert STD/ISD calls to local calls, this circuit needs accurate 1Hz clock pulses, generated by clock COB. This COB is found inside analogue quartz wall clocks or time-piece mechanisms. It consists of IC, chip capacitors, and crystal that one can retrieve from scrap quartz clock mechanisms. These can be purchased from watch-repairing shops for less than Rs 20.
Normally, the COB inside clock mechanism will be in good condition. However, before using the COB, please check its serviceability by applying 1.5V DC across terminals C and D, as shown in the figure. Then check DC voltage across terminals A and B; these terminals in a clock are connected to a coil. If the COB is in good condition, the multimeter needle would deflect forward and backward once every second. In fact, 0.5Hz clock is available at terminals A and B, with a phase difference of 90o. The advantage of using this COB is that it works on a 1.5V DC source.
The clock pulses available from terminal A and B are combined using a bridge, comprising diodes D1 to D4, to obtain 1Hz clock pulses. These clock pulses are applied to the base of transistor T1. The collector and emitter of transistor T1 are connected across calculator’s ‘=’ terminals.
The number of pulses forming an equivalent call may be determined from the latest telephone directory. However, the pulse rate (PR) found in the directory cannot be used directly in this circuit. For compatibility with this circuit, the pulse rate applicable for a particular place/distance, based on time of the day/holidays, is converted to pulse rate equivalent (PRE) using the formula PRE = 1/PR.
You may prepare a look-up table for various pulse rates and their equivalents (see Table). Suppose you are going to make an STD call in pulse rate 4. Note down from the table the pulse rate equivalent for pulse rate 4, which is 0.25. Please note that on maturity of a call in the telephone exchange, the exchange call meter immediately advances to one call and it will be further incremented according to pulse rate. So one call should always be included before counting the calls.
For making call in pulse rate 4, slide switch S1 to ‘off’ (pulse set position) and press calculator buttons in the following order: 1, ‘+’, 0.25, ‘=’. Here, 1 is initial count, and 0.25 is PRE. Now calculator displays 1.025. This call meter is now ready to count. Now make the call, and as soon as the call matures, immediately slide switch S1 to ‘on’ (start/standby position). The COB starts generating clock pulses of 1 Hz. Transistor T1 conducts once every second, and thus ‘=’ button in calculator is activated electronically once every second. The calculator display
starts from 1.25, advancing every second as follows:
1.25, 1.5, 1.75, 2.00, 2.25, 2.50, and so on.
After finishing the call, immediately slide switch S1 to ‘off’ position (pulse set position) and note down the local call meter reading from the calculator display. If decimal value is more than or equal to 0.9, add another call to the whole number value. If decimal value is less than 0.9, neglect decimal value and note down only whole numbers.
To store this local call meter reading into calculator memory, press ‘M+’ button. Now local call meter reading is stored in memory and is added to the previous local call meter reading. For continuous display of current local call meter reading, press ‘MRC’ button and slide switch S1 to ‘on’ (start/standby position). The current local call meter reading will blink once every second.
In prototype circuit, the author used TAKSUN calculator that costs around Rs 80. The display height was 1 cm. In this calculator, he substituted the two button-type batteries with two externally connected 1.5V R6 type batteries to run the calculator for more than an year.
The power ‘off’ button terminals were made dummy by affixing cellotape on contacts to avoid erasing of memory, should someone accidentally press the power ‘off’ button. This calculator has auto ‘off’ facility. Therefore, some button needs to be pressed frequently to keep the calculator ‘on’. So, in the idle condition, the ‘=’ button is activated electronically once every second by transistor T1, to keep the calculator continuously ‘on’.
Useful hints. Solder the ‘=’ button terminals by drilling small holes in its vicinity on PCB pattern using thin copper wire and solder it neatly, such that the ‘=’ button could get activated electronically as well as manually. Take the copper wire through a hole to the backside of the PCB, from where it is taken out of the calculator as terminals G and H.
At calculator’s battery terminals, solder two wires to ‘+’ and ‘–’ terminals. These wires are also taken out from calculator as terminals E and F. Affix COB on a general-purpose PCB and solder the remaining components neatly. For giving the unit an elegant look, purchase a jewellery plastic box with flip-type cover (size 15cm x 15cm). Now fix the board, calculator, and batteries, along with holder inside the jewellery box. Then mount the box on the wall and paste the look-up table inside the box cover in such a way that on opening the box, it is visible on left side of the box.
Caution. The negative terminals of battery A and battery B are to be kept isolated from each other for proper operation of this circuit.

LookUp Table

Pulse rate (PR)


2


2.5


3


4


6


8


12


16


24


32


36


48

Pulse rate eqlt. (PRE)


0.5000


0.4000


0.333


0.250


0.166


0.125


0.083


0.062


0.041


0.031


0.027


0.020

Note : Here PRE is shown up to three decimal places. In practice, one may use up to five or six decimal places.

Having Secrecy In Pararel Telephones



Often a need arises for connection of two telephone instruments in parallel to one line. But it creates quite a few problems in their proper performance, such as overloading and overhearing of the conversation by an undesired person. In order to eliminate all such problems and get a clear reception, a simple scheme is presented here (Fig. 1).
This system will enable the incoming ring to be heard at both the ends. The DPDT switch, installed with each of the parallel telephones, connects you to the line in one position of the switch and disconnects you in the other position of the switch. At any one time, only one telephone is connected to the line. To receive a call at an end where the instrument is not connected to the line, you just have to flip the toggle switch at your end to receive the call, and act as usual to have a conversation. As soon as the position of the toggle switch is changed, the line gets transferred to the other telephone instrument.
Mount one DPDT toggle switch, one telephone ringer, and one telephone terminal box on two wooden electrical switchboards, as shown in Fig. 3. Interconnect the boards using a 4-pair telephone cable as per Fig. 1. The system is ready to use. Ensure that the two lower leads of switch S2 are connected to switch S1 after reversal, as shown in the figure.

Telephone Line Based Audio Muting And Light On Circuit



Very often when enjoying music or watching TV at high audio level, we may not be able to hear a telephone ring and thus miss an important incoming phone call. To overcome this situation, the circuit presented here can be used. The circuit would automatically light a bulb on arrival of a telephone ring and simultaneously mute the music system/TV audio for the duration the telephone handset is off-hook. Lighting of the bulb would not only indicate an incoming call but also help in locating the telephone during darkness.
On arrival of a ring, or when the handset is off-hook, the inbuilt transistor of IC1 (opto-coupler) conducts and capacitor C1 gets charged and, in turn, transistor T1 gets forward biased. As a result, transistor T1 conducts, causing energisation of relays RL1, RL2, and RL3. Diode D1 connected in anti-parallel to inbuilt diode of IC1, in shunt with resistor R1, provides an easy path for AC current and helps in limiting the voltage across inbuilt diode to a safe value during the ringing. (The RMS value of ring voltage lies between 70 and 90 volts RMS.) Capacitor C1 maintains necessary voltage for continuously forward biasing transistor T1 so that the relays are not energised during the negative half cycles and off-period of ring signal. Once the handset is picked up, the relays will still remain energised because of low-impedance DC path available (via cradle switch and handset) for the in-built diode of IC1. After completion of call when handset is placed back on its cradle, the low-impedance path through handset is no more available and thus relays RL1 through RL3 are deactivated.
As shown in the figure, the energised relay RL1 switches on the light, while energisation of relay RL2 causes the path of TV speaker lead to be opened. (For dual-speaker TV, replace relay RL2 with a DPDT relay of 6V, 200 ohm.) Similarly, energisation of DPDT relay RL3 opens the leads going to the speakers and thus mutes both audio speakers. Use ‘NC’ contacts of relay RL3 in series with speakers of music system and ‘NC’ contacts of RL2 in series with TV speaker. Use ‘NO’ contact of relay RL1 in series with a bulb to get the visual indication

Two Line Intercom Push A Telephone Change Over Switch



The circuit presented here can be used for connecting two telephones in parallel and also as a 2-line intercom.
Usually a single telephone is connected to a telephone line. If another telephone is required at some distance, a parallel line is taken for connecting the other telephone. In this simple parallel line operation, the main problem is loss of privacy besides interference from the other phone. This problem is obviated in the circuit presented here.
Under normal condition, two telephones (telephone 1 and 2) can be used as intercom while telephone 3 is connected to the lines from exchange. In changeover mode, exchange line is disconnected from telephone 3 and gets connected to telephone 2.
For operation in intercom mode, one has to just lift the handset of phone 1 and then press switch S1. As a result, buzzer PZ2 sounds. Simultaneously, the side tone is heard in the speaker of handset of phone 1. The person at phone 2 could then lift the handset and start conversation. Similar procedure is to be followed for initiation of the conversation from phone 2 using switch S2. In this mode of operation, a 3-pole, 2-way slide-switch S3 is to be used as shown in the figure.
In the changeover mode of operation, switch S3 is used to changeover the telephone line for use by telephone 2. The switch is normally in the intercom mode and telephone 3 is connected to the exchange line. Before changing over the exchange line to telephone 2, the person at telephone 1 may inform the person at telephone 2 (in the intercom mode) that he is going to changeover the line for use by him (the person at telephone 2). As soon as changeover switch S3 is flipped to the other position, 12V supply is cut off and telephones 1 and 3 do not get any voltage or ring via the ring-tone-sensing unit.
Once switch S3 is flipped over for use of exchange line by the person at telephone 2, and the same (switch S3) is not flipped back to normal position after a telephone call is over, the next telephone call via exchange lines will go to telephone 2 only and the ring-tone-sensing circuit will still work. This enables the person at phone 3 to know that a call has gone through. If the handset of telephone 3 is lifted, it is found to be dead. To make telephone 3 again active, switch S3 should be changed over to its normal position.

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | cheap international calls